Part Number Hot Search : 
TLMB3106 DFS45425 2F8727P 29068601 UPD75 OFC2410 VNP20 1Z10A
Product Description
Full Text Search
 

To Download TA1218F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TA1218N/F
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA1218N, TA1218F
Audio/Video Switching IC for TVs
The TA1218N/F is an audio/video switching IC for TV sets. Conforming to I2C bus standards, it allows you to perform various switching operations through the bus lines by using a microcomputer. Thanks to its 2-channel outputs, the TA1218N/F can also be used for the PIP systems. Furthermore, since the presence of a signal on its sync signal output pin can be determined by a microcomputer, it is possible to check each input/output channel (self-diagnosis). This IC has the same pin assignments as the TA1219AN (SDIP36), a 1-channel output version of the TA1218N/F, so these chips are pin compatible on pins 3 to 20 and 23 to 40.
TA1218N
TA1218F
Features
* * * * * * I2C bus control Video : 5-channel inputs and 2-channel outputs (2 channels conforming to S system) Audio : 5-channel inputs and 3-channel outputs Self-diagnostic function ADC inputs based on European 21-pin standards Switchable subaddress Weight SDIP42-P-600-1.78 : 4.13 g (typ.) QFP48-P-1014-0.80 : 0.83 g (typ.)
000707EBA1
* TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. * The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. * The products described in this document are subject to the foreign exchange and foreign trade laws. * The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. * The information contained herein is subject to change without notice.
2000-09-11
1/40
TA1218N/F
Block Diagram
Det Select Det in VCC GND -6dB 38 (38) Vout1
(46) (45)
4 3
33 23
(33) (21)
VCC GND
VinV1 VinV2 VinTV
(6) 10 28 (26) 7 (2) 12 (8) 16 (12)
Y/VinS1 Y/VinS2
42 36 + S + 34 32 S Mute 24 Sync separator IC bus Pulse converter
2
(42) (36) (32)
Vout2 Yout Yin
30
CinS1 CinS2
14 (10) 18 (15)
(34) (30)
Cout Cin
24 25 27 19
(22) (23) (25) (16) (17) (18) (19) (41) (40) (37) (43)
SCL SDA Address I/O1 (3 level) I/O2 (3 level) I/O3 O4 O5 LoutTV Lout1 Lout2
Sync out
(24)
26
IL Logic
2
20 I/O 21 22 41 40 37 1
LinS1 LinS2 LinV1 LinV2 LinTV
11 (7) 15 (11) 8 (3) 29 (31) 5 (47)
RinS1 RinS2 RinV1 RinV2 RinTV
13 (9) 17 (13) 9 (5) 31 (29) 6 (48)
39 35 2
(39) (35) (44)
RoutTV Rout1 Rout2
Note1: (
): The terminal number of TA1218F.
2000-09-11
2/40
TA1218N/F
Pin Assignment
TA1218N
1 Lout2 2 Rout2 3 Det in 4 Det Select 5 LinTV 6 RinTV 7 VinTV 8 LinV1 9 RinV1 10 VinV1 11 LinS1 12 Y/VinS1 13 RinS1 14 CinS1 15 LinS2 16 Y/VinS2 17 RinS2 18 CinS2 19 I/O1 20 I/O2 21 I/O3 TA1218N
Vout2 42 O5 41 LoutTV 40 RoutTV 39 Vout1 38 Lout1 37 Yout 36 Rout1 35 Cout 34 VCC 33 Cin 32 RinV2 31 Yin 30 LinV2 29 VinV2 28 Address 27 Sync out 26 SDA 25 SCL 24 GND 23 O4 22
2000-09-11
3/40
TA1218N/F
TA1218F
48 R TV 47 L TV 46 Det Select 45 Det in 44 Rout2 43 Lout2 42 Vout2 41 O5 40 LoutTV 39 RoutTV Vout1 38 Lout1 37 Yout 36 Rout1 35 Cout 34 VCC 33 NC 32 TA1218F 8 Y/VinS1 9 RinS1 10 CinS1 11 LinS2 12 Y/VinS2 13 RinS2 14 NC Sync out NC 31 Cin 30 RinV2 29 Yin 28 LinV2 27 VinV2 26 Address 25 24
1 NC 2 VinTV 3 LinV1 4 NC 5 RinV1 6 VinV1 7 LinS1
CinS2
GND
15
16
17
18
19
20
21
22
SDA 23
SCL
I/O1
I/O2
I/O3
NC
O4
2000-09-11
4/40
TA1218N/F
Pin Description (( ): the pin number of TA1218F)
Pin No. Name Function This pin is for output a sub-channel left audio signal. The signals fed into the chip via LinV1, LinV2, LinS1, LinS2, or LinTV is output from this pin. The output resistance of this pin is 45 . Lout2 Furthermore, the signal output from this pin is pulse-converted for use in self-diagnosis. The converted signal is output from Sync Out. This output can be muted in combination with Rout2 by bus control. This pin is for output a sub-channel right audio signal. The signals fed into the chip via RinV1, RinV2, RinS1, RinS2, or RinTV is output from this pin. The output resistance of this pin is 45 . Rout2 Furthermore, the signal output from this pin is pulse-converted for use in self-diagnosis. The converted signal is output from Sync Out. This output can be muted in combination with Lout2 by bus control. Interface
100
1 (43)
1
(43) 20 k 1.5 mA
100
70 k 20 k 1.5 mA 70 k
Lout2 SW
Rout2 SW
2 (44)
2
(44)
3 (45)
Det in
This pin is for input a sync separation signal. Input the signal from Det Select to this pin with capacitance coupling. The input resistance of this pin is 18 k. The sync signal separated from Det Select is outputted from Sync Out for use in self-diagnosis.
3
(45) 7 A/1.1 A
1 k 7.3 V
22.5 k

This pin is for output a sync separation signal. 4 (46) Signals VinV1, VinV2, VinTV, Y/VinS1, Vout1, Vout2, Yout, or Cout are outputted from this pin. The output resistance of this pin is 35 . Input the signal from this pin to Det in with capacitance coupling.
100
Det Select SW
Det Select
4
(46)
200
2000-09-11
1 k
5/40
TA1218N/F
Pin No. Name Function Interface
5 (47) LinTV
The input dynamic range of this pin (47) is 6.5 Vp-p and the input resistance is 70 k.
5.2 V 70 k
This pin is for input a left audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to LoutTV, Lout1, and Lout2.
1.5 k
5
1.5 k
1.5 k



6 (48)
The input dynamic range of this pin (48) is 6.5 Vp-p and the input resistance is 70 k.
5.2 V 70 k
RinTV
This pin is for input a right audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to RoutTV, Rout1, and Rout2.
1.5 k
6
1.5 k
1.5 k



7 (2)
VinTV
(2)
The input dynamic range of this pin is 2.0 Vp-p and the input resistance is 30 k.
5.2 V 30 k
This pin is for input a composite audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to Vout1, Vout2, Yout, and Cout. The same signal is also output from Det Select as a sync separation signal.
1.5 k
7

1.5 k
1.5 k
8 (3)
LinV1
The input dynamic range of this pin is 6.5 Vp-p and the input resistance is 70 .
(3)
5.2 V 70 k
This pin is for input a left audio signal from an external source (V1 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to Lout1 and Lout2.
1.5 k
8
1.5 k


2000-09-11
6/40
TA1218N/F
Pin No. Name Function Interface
9 (5) RinV1
The input dynamic range of this pin is 6.5 Vp-p and the input resistance is 70 k.
(5)
5.2 V 70 k
This pin is for input a right audio signal from an external source (V1 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to Rout1 and Rout2.
1.5 k
9
1.5 k


10 (6)
(6)
5.2 V 30 k
VinV1
This pin is for input a composite video signal from an external source (V1 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to Vout1, Vout2, Yout, and Cout. The same signal is also output from Det Select as a sync separation signal. The input dynamic range of this pin is 2.0 Vp-p and the input resistance is 30 k.
1.5 k
10

1.5 k
1.5 k
11 (7)
LinS1
This pin is for input a left audio signal from an external source (S1 channel). The signal fed into this pin is presented to Lout1 and Lout2. The input dynamic range of this pin is 6.5 Vp-p and the input resistance is 70 k.
1.5 k
11
(7) 5.2 V 70 k
1.5 k


12 (8)
Y/VinS1
(8)
5.2 V 30 k
This pin is for input a luminance signal or composite video signal from an external source (S1 channel). The signal fed into this pin is presented to Vout1, Vout2, Yout, and Cout. The same signal is also output from Det Select as a sync separation signal. The input dynamic range of this pin is 2.0 Vp-p and the input resistance is 30 k.
1.5 k
12

1.5 k
1.5 k
2000-09-11
7/40
TA1218N/F
Pin No. Name Function Interface
13 (9) RinS1
This pin is for input a right audio signal from an external source (S1 channel). The signal fed into this pin is presented to Rout1 and Rout2. The input dynamic range of this pin is 6.5 Vp-p and the input resistance is 70 k.
1.5 k
13
(9) 5.2 V 70 k
1.5 k


14 (10)
(10)
5.2 V 30 k
1.5 k
1.5 k S Mode SW
The input dynamic range of this pin is 2.0 Vp-p and the input resistance is 30 k.
15 (11)
LinS2
This pin is for input a left audio signal from an external source (S2 channel). The signal fed into this pin is presented to Lout1 and Lout2.
1.5 k
15
5.2 V 70 k
The input dynamic range of this pin (11) is 6.5 Vp-p and the input resistance is 70 k.
1.5 k


16 (12)
Y/VinS2
The input dynamic range of this pin is 2.0 Vp-p and the input resistance is 30 k.
(12)
5.2 V 30 k
This pin is for input a luminance signal or composite aoudio signal from an external source (S2 channel). The signal fed into this pin is presented to Vout1, Vout2, Yout, and Cout.
1.5 k
16

1.5 k
2000-09-11
8/40
2.25 V
CinS1
This pin is for input a chroma signal from an external source (S1 channel). It also functions as an S-mode select switch for the S1 channel. The S mode is selected when the pin voltage is 2.25 V or less. The signal fed into this pin is presented to Cout directly and to Vout1 and Vout2 after being combined with the YinS1 signal.
1.5 k
14
TA1218N/F
Pin No. Name Function Interface
17 (13) RinS2
This pin is for input a right audio signal from an external source (S2 channel). The signal fed into this pin is presented to Rout1 and Rout2.
1.5 k
17
5.2 V 70 k
The input dynamic range of this pin (13) is 6.5 Vp-p and the input resistance is 70 k.
1.5 k


18 (15)
(15)
5.2 V 30 k
1.5 k
1.5 k S Mode SW
The input dynamic range of this pin is 2.0 Vp-p and the input resistance is 30 k.
This is an ADC input/DAC output pin. 19 (16) The ADC is a 3-level detection type (2 bits). The threshold levels are 7.0 V and 2.25 V. The DAC (1 bit) is an open-collector output. Make sure that the current flowing into this pin is 2.0 mA or less.
2.25 V
(16) Logic
This is an ADC input/DAC output pin. 20 (17) The ADC is a 3-level detection type (2 bits). The threshold levels are 7.0 V and 2.25 V. The DAC (1 bit) is an open-collector output. Make sure that the current flowing into this pin is 2.0 mA or less.
2.25 V
(17) Logic
2000-09-11
9/40
7.0 V
I/O2
20
7.0 V
I/O1
19
2.25 V
CinS2
This pin is for input a chroma signal from an external source (S2 channel). It also functions as an S-mode select switch for the S2 channel. The S mode is selected when the pin voltage is 2.25 V or less. The signal fed into this pin is presented to Cout directly and to Vout1 and Vout2 after being combined with the YinS2 signal.
1.5 k
18
TA1218N/F
Pin No. Name Function Interface
This is an ADC input/DAC output pin. 21 (18) I/O3 The ADC is a 2-level detection type (1 bit). The threshold level is 2.25 V. The DAC (1 bit) is an open-collector output. Make sure that the current flowing into this pin is 2.0 mA or less.
(18) Logic
22 (19)
O4
This pin is for a 1 bit DAC output. This is an open-collector output. Make sure that the current flowing into this pin is 2.0 mA or less.
22
(19) Logic
23 (21)
GND
This is the GND pin.
24 (22)
SCL
Surge protection circuit
25 (23)
SDA
This is an I C bus data input/output pin. The input threshold level of this pin is 2.25 V. Make sure that the current flowing into this pin is 3.0 mA or less.
2
25
Surge protection circuit 2.25 V (25) Logic
2000-09-11
2.25 V
This pin is for input an I C bus clock. The input threshold level of this pin 24 is 2.25 V. (22)
2
2.25 V
21
Logic
10/40
TA1218N/F
Pin No. Name Function Interface
26 (24)
Sync out
This pin is for output a self-diagnostic sync signal. The signal separated from VinTV VinV1, VinV2, Y/VinS1, Vout1, Vout2, Yout, or Cout is outputted from this pin. In addition, the signal derived from Lout1, Rout1, Lout2, or Rout2 is also output from this pin for use in audio block diagnosis. This is an open-collector output. Make sure that the current flowing into this pin is 2.0 mA or less.

Output select SW

26
(24) 1.5 V Address select SW 60 k
27 (25)
Address
This is for an I C bus slave address select switch. The threshold level of this pin is 2.25 V. The following lists the addresses : High : 92H (write), 93H (read) Low : 90H (write), 91H (read)
2
27
(25) 30 k 1.5 k 5.2 V 30 k 1.5 k 1.5 k 1.5 k
28 (26)
VinV2
This pin is for input a composite video signal from an external source (V2 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to Vout1, Vout2, Yout, and Cout. The 28 same signal is also output from Det (26) Select as a sync separation signal. The input dynamic range of this pin is 2.0 Vp-p and the input resistance is 30 k.
29 (27)
LinV2
The input dynamic range of this pin is 6.5 Vp-p and the input resistance is 70 k.
(27)
5.2 V 70 k
This pin is for input a left audio signal from an external source (V2 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to Lout1 and Lout2.
29
1.5 k


2000-09-11
11/40
TA1218N/F
Pin No. Name Function Interface
30 (28) Yin
This pin is for input a luminance signal from an external comb filter. The signal fed into this pin is presented to Yout.
1.5 k
30
5.2 V 60 k
The input dynamic range of this pin (28) is 5.5 Vp-p and the input resistance is 60 k.
31 (29)
The input dynamic range of this pin is 6.5 Vp-p and the input resistance is 70 k.
(29)
5.2 V 70 k
RinV2
This pin is for input a right audio signal from an external source (V2 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to Rout1 and Rout2.
1.5 k
31
1.5 k


This pin is for input a chroma signal from an external comb filter. The signal fed into this pin is presented to Cout. 32 (30) Cin The input dynamic range of this pin is 5.5 Vp-p and the input resistance is 32 (30) 60 k. This pin also functions as a audio mute switch. The entire audio output can be muted by pulling the voltage on this pin below 2.25 V. This is the power supply pin. Apply 9 V to this pin. The current consumption of this pin is 47 mA. 1.5 k 5.2 V 60 k 1.5 k Sound Mute 2.25 V
33 (33) VCC
34 (34)
Cout
This pin is for output a chroma signal. The signal fed into Cin, CinS1, CinS2, VinV1, VinV2, Y/VinS1, Y/VinS2, or VinTV is outputted from this pin. The output resistance of this pin is 25 . The same signal is also outputted from Det Select as a sync separation signal.
100
Cout SW
34
1.8 mA (34)
1.5 k
2000-09-11
12/40
TA1218N/F
Pin No. Name Function This pin is for output the main channel right audio signal. The signal fed into RinV1, RinV2, RinS1, RinS2, or RinTV is outputted from this pin. The output resistance of this pin is 45 . Rout1 Furthermore, the signal outputted 35 from this pin is pulse-converted for (35) use in self-diagnosis. The converted signal is outputted from Sync Out. This outputted can be muted independently of Lout1 by bus control. Interface
100
35 (35)
20 k
36 (36)
Yout
This pin is for output a luminance signal. The signal fed into Yin, Y/VinS1, Y/VinS2, VinV1, VinV2, or VinTV is outputted from this pin. The output resistance of this pin is 25 . The same signal is also outputted from Det Select as a sync separation signal.
100
Yout SW
36
1.8 mA (36)
1.5 mA
70 k
Rout1 SW
1.5 k
37 (37)
Lout1
20 k
This output can be muted independently of Rout1 by bus control.
38 (38)
Vout1
2.0 mA
This pin is for output the main channel composite video signal. The signal fed into VinTV, VinV1, VinV2, VinS1, VinS2, YinS1 + CinS1, or YinS2 + CinS2 is outputted from this pin. The output resistance of this pin 38 is 25 (38) The same signal is also outputted from Det Select as a sync separation signal.
100
Vout1 SW 1.5 k
1.5 mA
Furthermore, the signal outputted 37 from this pin is pulse-converted for (37) use in self-diagnosis. The converted signal is outputted from Sync Out.
70 k
This pin is for output the main channel left audio signal. The signal fed into LinV1, LinV2, LinS1, LinS2, or LinTV is outputted from this pin. The output resistance of this pin is 45 .
100
Lout1 SW
2000-09-11
13/40
TA1218N/F
Pin No. Name Function Interface
100
39 (39)
RoutTV
20 k
100
1.5 mA
This output can be muted in combination with LoutTV by bus control.
39
(39)
70 k 20 k 100 Vout2 SW 1.5 mA Logic 70 k 2.0 mA
This pin is for output only the signal that is forwarded from RinTV. The output resistance of this pin is 45 .
RoutTV SW
40 (40)
LoutTV
This pin is for output only the signal that is forwarded from LinTV. The output resistance of this pin is 45 . This output can be muted in combination with RoutTV by bus control.
LoutTV SW
40
(40)
41 (41)
O5
This is a 1 bit DAC output pin. This is an open-collector output. Make sure that the current flowing into this 41 (41) pin is 2.0 mA or less.
42 (42)
Vout2
This pin is for output a sub-channel composite video signal. The signal fed into VinTV, VinV1, VinV2, VinS1, VinS2, YinS1 + CinS1, or YinS2 + CinS2 is outputted from this pin. The output resistance of this pin is 25 . The same signal is also outputted from Det Select as a sync separation signal.
42
(42)
1.5 k
2000-09-11
14/40
TA1218N/F
Bus Data Specifications
Data Structure
(1) Write
Slave address (90H or 92H) W (0)
S
A
Data 1
A
Data 2
A
Data 3
A
P
(2)
Read
Slave address (91H or 93H) R (1)
S
A
Data 4
A
P
Note2: Slave address is switched by the voltage applied to pin 27 (address). Switched to 90H when low (GND); switched to 92H when high (VCC) during write mode.
Contents of Data
Mode Data No. B07 Data 1 [F0H] LoutTV RoutTV B17 Write Data 2 [1FH] Sync detection sensitivity switching B27 Data 3 [07H] O5 B37 Read Data 4 I/O3 O4 B36 DAC output switching I/O3 B35 I/O2 B34 I/O1 B33 B32 B31 B30 Power-on reset Input select (sub) B06 B05 Contents of Data B04 B03 Forced TV Audio B13 B12 B02 B01 B00
Audio mute Lout2 Rout2 B16 Sync output switching B26 Rout1 B15 Lout1 B14
YC output switching Yout B11 Cout B10
Sync (diagnosis) detection switching
Input select (main)
B25
B24
B23
B22
B21
B20
ADC input discrimination I/O2 Hi I/O2 Low I/O1 Hi I/O1 Low
S input discrimination CinS1 CinS2
Note3: Shown in [
] are reset data.
Note4: The data contents marked by a slash (/) are an unused bit (data free).
2000-09-11
15/40
TA1218N/F
Main Video Select: Terminal 38 (38) Output Signal
Mode Input S/V V S1 S FV V S2 S FV (Note5) V1 V2 TV V V V Output Signal Vout1 Y/VinS1 Y/VinS1 + CinS1 Y/VinS1 Y/VinS2 Y/VinS2 + CinS2 Y/VinS2 VinV1 VinV2 VinTV * * * * * * 1 1 1 0 1 1 * Open 1 1 0 1 Low 0 0 1 S Input Discrimination CS1 Low 0 * Open 1 0 0 CS2 Bus Data Input Select (main) B12 B11 B10
Do not use [100] for the input select data. Note5: FV: Forced Video Mode.
Main L/R Select: Terminal 37 and 35 (37 and 35) Output Signal
Mode Main L/R Output Signal Lout1 LinS1 LinS2 LinV1 LinV2 LinTV LinTV Rout1 RinS1 RinS2 RinV1 RinV2 RinTV RinTV 1 0 Bus Data Forced TV Voice B03 Input Select (main) B12 0 0 1 1 1 * B11 0 1 0 1 1 * B10 * * 1 0 1 *
Input S1 S2 V1 V2 TV TV
Do not use [100] for the input select data.
2000-09-11
16/40
TA1218N/F
Sub (PIP) Video Select: Terminal 42 (42) Output Signal
Mode INPUT S/V V S1 S FV V S2 S FV V1 V2 TV V V V Output Signal Vout2 Y/VinS1 Y/VinS1 + CinS1 Y/VinS1 Y/VinS2 Y/VinS2 + CinS2 Y/VinS2 Vin1 Vin2 VinTV * * * * * * 1 1 1 1 1 1 * Open 1 1 0 1 Low 0 0 1 Low 0 * Open 1 0 0 S Input Discrimination B22 Bus Data Input Select (sub) B21 B20
Do not use [100] for the input select data.
Sub L/R Select: Terminal 37 and 35 (37 and 35) Output Signal
Mode SUB L/R Output Signal Lout2 LinS1 LinS2 LinV1 LinV2 LinTV LinTV Rout2 RinS1 RinS2 RinV1 RinV2 RinTV RinTV 1 0 Bus Data Forced TV Voice B03 B22 0 0 1 1 1 * Input Select (sub) B21 0 1 0 1 1 * B20 * * 1 0 1 *
Input S1 S2 V1 V2 TV TV
Do not use [100] for the input select data.
2000-09-11
17/40
TA1218N/F
Y Output Select: Terminal 30 (32) Output Signal
Mode Input Through Yin S1 V through Y through Yin S2 V through Y through V1 Yin V through V2 Yin V through TV Yin V through Y Output Signal Yout Yin Y/VinS1 Y/VinS1 Yin Y/VinS2 Y/VinS2 Yin VinV1 Yin VinV2 Yin VinTV TV V V2 V V1 S2 S V S1 S V or FV V or FV Bus Data Main V Select Mode (see table 2-2.) Y Output Switching B01 0 1 * 0 1 * 0 1 0 1 0 1
C Output Select: Terminal 34 (34) Output Signal
Mode Input Through Cin S1 V through C through Cin S2 V through C through V1 Cin V through V2 Cin V through TV Cin V through Y Output Signal Cout Cin Y/VinS1 CinS1 Cin Y/VinS2 CinS2 Cin VinV1 Cin VinV2 Cin VinTV TV V V2 V V1 S2 S V S1 S V or FV V or FV Bus Data Main V Select Mode (see table 2-2.) C Output Switching B00 0 1 * 0 1 * 0 1 0 1 0 1
2000-09-11
18/40
TA1218N/F
Sync Detection Select: Terminal 4 (46) Output Signal
Mode Detection Select Det Select TV Video Input V1 V2 S1 Vout1 Video Output Vout2 Yout Cout Rout1 Audio Output Lout1 Rout2 Lout2 VinTV VinV1 VinV2 Y/VinS1 Vout1 Vout2 Yout Cout Rout1 Lout1 Rout2 Lout2 1 * 1 0 0 0 Sync 0 1 1 0 1 0 0 0 1 1 Sync 0 0 Sync Output Sync Switching Sync Out B16 Bus Data Sync Detection Switching B15 B14 1 0 1 0 1 0 B13 1 1 0 0 1 1
For Det Select marked by , the video input or video output corresponding to data B15, B14, and B13 is selected.
Sync Detection Sensitivity Switching
Bus Data Mode Detection Sensitivity Switching B17 Sensitivity High Low 1 0
2000-09-11
19/40
TA1218N/F
Audio Mute
Mode Output Lout1 Mute off on off * on off * on off on 0 * 1 * * 1 0 * * * 1 0 * B07 * Bus Data Audio Mute B06 * B05 * B04 0 1
Rout1 Lout2 Rout2 LoutTV RoutTV
DAC Output Switching
Mode Output I/O1 State Open Low I/O2 Open * Low I/O3 Open * Low O4 Open * Low O5 Open Low 0 * 1 * * * 1 0 * * * * 1 0 * * * * 1 0 * B27 * B26 * Bus Data DAC Output Switching B25 * B24 * B23 0 1
2000-09-11
20/40
TA1218N/F
Read Mode
Power-On Reset Discrimination
Bus Data Mode Power-On Reset B30 Reset on off 1 0
S Input Discrimination
Mode Input CinS2 Voltage High (open) Low High (open) Low 1 * 0 B32 * Bus Data S Input Discrimination B31 1 0
CinS1
ADC Input Discrimination
Mode Input Voltage High I/O1 Mid Low High I/O2 Mid Low I/O3 High Low 0 * 1 * * * * 1 1 0 0 * * * * * 1 1 B37 B36 Bus Data ADC Input Discrimination B35 B34 0 B33 0
2000-09-11
21/40
TA1218N/F
Outline of I C Bus Control Format
The TA1218N/F's bus control format conforms to the Philips I2C bus control format. (1) Start and stop conditions
2
SDA
SCL
S Start condition
P Stop condition
(2)
Bit transfer
SDA
SCL
SDA must not be changed
SDA can be changed
(3)
Acknowledgement
SDA from Master
High impedance
SDA from Slave
High impedance
SCL from Master
S
1
8
9
Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
2000-09-11
22/40
TA1218N/F
Maximum Ratings
Characteristics Supply voltage Power dissipation Operating temperature Storage temperature N F (Note7) Symbol VCC PDMAX (Note6) Topr Tstg Rating 14 1800 1388 -20 to 65 -55 to 150 C C Unit V mW
Note6: When using the device at temperatures above Ta = 25C, reduce the rated power dissipation by 14.4 mW at TA1218N or 11.1 mW TA1218F per degree of centigrade. (see the diagram below.) Note7: This device is not proof enough against a strong E-M field by CRT which may cause function errors and/or poor characteristics. Keeping the distance from CRT to the device longer than 20 cm, or if cannot, placing shield metal over the device, is recommended in an application.
1800
PD
(mW)
14.4 mW/C 1224
Power consumption
0 0
25
65
150
Ambient temperature Ta (C)
1388
PD
(mW)
11.1 mW/C 944
Power consumption
0 0
25
65
150
Ambient temperature Ta (C)
2000-09-11
23/40
TA1218N/F
Recommended Operating Conditions, (
Characteristics Supply voltage Composite signal input amplitude Y input amplitude Comb Y input amplitude Chroma input amplitude Comb chroma input amplitude Audio input amplitude 33 (33) 7, 10, 12, 16, 28 (2, 6, 8, 12, 26) 12, 16 (8, 8) 30 (32) 14, 18 (10, 15) 32 (30) 5, 6, 8, 9, 11, 13, 15, 17, 29, 31 (3, 5, 7, 9, 11, 13, 29, 31, 47, 48)
): The Terminal Number of TA1218F
Min 8.1 Typ. 9.0 1.0 1.0 2.0 286 572 Max 9.9 6.0 Unit V Vp-p Vp-p Vp-p mVp-p Burst mVp-p Burst Vp-p 100IRE 100IRE Remark
Test Condition
Electrical Characteristics
Current Consumption
Pin No. N 33 F 33 VCC Pin Name
(referenced to VCC = 9 V at Ta = 25C unless otherwise specified)
Symbol ICC
Test Circuit
Min 30
Typ. 47
Max 64
Unit mA
2000-09-11
24/40
TA1218N/F
Pin Voltage
Pin No. N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 28 29 30 31 32 33 34 35 36 37 38 39 40 42 F 43 44 45 46 47 48 2 3 5 6 7 8 9 10 11 12 13 15 21 26 27 28 29 30 33 34 35 36 37 38 39 40 42 Lout2 Rout2 Det in Det Select LinTV RinTV VinTV LinV1 RinV1 VinV1 LinS1 Y/VinS1 RinS1 CinS1 LinS2 Y/VinS2 RinS2 CinS2 GND VinV2 LinV2 Yin RinV2 Cin VCC Cout Rout1 Yout Lout1 Vout1 RoutTV LoutTV Vout2 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V23 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V42 Pin Name Symbol Test Circuit Min 3.7 3.7 6.3 3.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 3.5 3.7 3.5 3.7 4.1 3.7 3.7 4.1 Typ. 4.0 4.0 6.6 3.7 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 0 5.2 5.2 5.2 5.2 5.2 9.0 3.8 4.0 3.8 4.0 4.4 4.0 4.0 4.4 Max 4.3 4.3 6.9 4.0 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 4.1 4.3 4.1 4.3 4.7 4.3 4.3 4.7 Unit V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V
2000-09-11
25/40
TA1218N/F
DC Characteristics
Characteristics Measured Pin Det in VinTV VinV1 VinV2 Y/VinS1 Y/VinS2 CinS1 CinS2 Yin Input pin Input resistance Cin LinTV RinTV LinV1 RinV1 LinV2 RinV2 LinS1 RinS1 LinS2 RinS2 Det Select Vout1 Vout2 Yout Output pin Output resistance Cout LoutTV RoutTV Lout1 Rout1 Lout2 Rout2 CinS1 S mode discrimination voltage CinS2 VthC2 1.75 2.25 2.75 V Symbol R3 R7 R10 R28 R12 R16 R14 R18 R30 R32 R5 R6 R8 R9 R29 R31 R11 R13 R15 R17 R4 R38 R42 R36 R34 R40 R39 R37 R35 R1 R2 VthC1 Test Circuit Min. 10 20 20 20 20 20 20 20 40 40 49 49 49 49 49 49 49 49 49 49 17 13 13 13 13 20 20 20 20 20 20 1.75 Typ. 18 30 30 30 30 30 30 30 60 60 70 70 70 70 70 70 70 70 70 70 35 25 25 25 25 45 45 45 45 45 45 2.25 Max. 30 40 40 40 40 40 40 40 80 80 100 100 100 100 100 100 100 100 100 100 53 50 50 50 50 90 90 90 90 90 90 2.75 Unit k k k k k k k k k k k k k k k k k k k k V Voltage on pin 14 (10) at which data B31 changes. Voltage on pin 18 (15) at which data B32 changes. Voltage on pin 32 (30) at which voice is muted. Voltage on pin 27 (25) at which the slave address changes. Measure a voltage change V on each pin when a current of 100 A flows into the pin. Then calculate the output resistance value R. R = V/100 A [] Measure a change I in the current flowing into each pin when the voltage is raised by 0.5V. Then calculate the input resistance value R. R = 0.5 V/I [] Remark
External mute ON voltage
Cin
VthM
1.75
2.25
2.75
V
Address switching voltage
Address
VthA
1.75
2.25
2.75
V
2000-09-11
26/40
TA1218N/F
Characteristics Measured Pin Symbol Test Circuit Min. Typ. Max. Unit Remark Mid-Low threshold level of I/O1 input (pin 19 (16)). Hig-Mid threshold level of I/O1 input (pin 19 (16)). Mid-Low threshold level of I/O2 input (pin 20 (17)). Hig-Mid threshold level of I/O2 input (pin 20 (17)). Hig-Low threshold level of I/O1 input (pin 21).
I/O1
VthI1L
1.75
2.25
2.75
V
I/O1
VthI1M
6.5
7.0
7.5
V
ADC input discrimination voltage
I/O2
VthI2L
1.75
2.25
2.75
V
I/O2
VthI2M
6.5
7.0
7.5
V
I/O3
VthI3
1.75
2.25
2.75
V
2000-09-11
27/40
TA1218N/F
AC Characteristics
Characteristics Select Mode VinTV VinV1 Vout1 Input dynamic range VinV2 Y/VinS1 CinS1 Y/VinS2 CinS2 VinTV VinV1 Vout1 Gain VinV2 Y/VinS1 CinS1 Y/VinS2 CinS2 VinTV VinV1 VinV2 Vout1 Frequency response Y/VinS1 CinS1 Y/VinS2 CinS2 VinTV VinV1 VinV2 Vout1 Crosstalk Y/VinS1 CinS1 Y/VinS2 CinS2 VinTV VinV1 Vout2 Input dynamic range VinV2 Y/VinS1 CinS1 Y/VinS2 CinS2 Symbol VDR7V1 VDR10V1 VDR28V1 VDR12V1 VDR14V1 VDR16V1 VDR18V1 G7V1 G10V1 G28V1 G12V1 G14V1 G16V1 G18V1 F7V1 F10V1 F28V1 F12V1 F14V1 F16V1 F18V1 CT7V1 CT10V1 CT28V1 CT12V1 CT14V1 CT16V1 CT18V1 VDR7V2 VDR10V2 VDR28V2 VDR12V2 VDR14V2 VDR16V2 VDR18V2 Test Circuit Min. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 10 10 10 10 10 10 10 55 55 55 55 55 55 55 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Typ. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 60 60 60 60 60 60 60 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Max. 6.5 6.5 6.5 6.5 6.5 6.5 6.5 Unit Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p dB dB dB dB dB dB dB MHz MHz MHz MHz MHz MHz MHz dB dB dB dB dB dB dB Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 38 (38) is 3dB down from the 15 kHz applied level. (1) Apply a 3.58 MHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk. (1) Apply a 15 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 42 (42) begins to be distorted. (1) Apply a 15 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. Test Method (1) Apply a 15 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 38 (38) begins to be distorted.
2000-09-11
28/40
TA1218N/F
Characteristics Select Mode VinTV VinV1 Vout2 Gain VinV2 Y/VinS1 CinS1 Y/VinS2 CinS2 VinTV VinV1 VinV2 Vout2 Frequency response Y/VinS1 CinS1 Y/VinS2 CinS2 VinTV VinV1 VinV2 Vout2 Crosstalk Y/VinS1 CinS1 Y/VinS2 CinS2 VinTV VinV1 Yout Input dynamic range VinV2 Y/VinS1 Y/VinS2 Yin VinTV VinV1 Yout Gain VinV2 Y/VinS1 Y/VinS2 Yin Symbol G7V2 G10V2 G28V2 G12V2 G14V2 G16V2 G18V2 F7V2 F10V2 F28V2 F12V2 F14V2 F16V2 F18V2 CT7V2 CT10V2 CT28V2 CT12V2 CT14V2 CT16V2 CT18V2 VDR7Y VDR10Y VDR28Y VDR12Y VDR16Y VDR30Y G7Y G10Y G28Y G12Y G16Y G30Y Test Circuit Min. 5.5 5.5 5.5 5.5 5.5 5.5 5.5 10 10 10 10 10 10 10 55 55 55 55 55 55 55 1.5 1.5 1.5 1.5 1.5 5.0 5.5 5.5 5.5 5.5 5.5 -0.5 Typ. 6.0 6.0 6.0 6.0 6.0 6.0 6.0 60 60 60 60 60 60 60 2.0 2.0 2.0 2.0 2.0 5.5 6.0 6.0 6.0 6.0 6.0 0 Max. 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 0.5 Unit dB dB dB dB dB dB dB MHz MHz MHz MHz MHz MHz MHz dB dB dB dB dB dB dB Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p dB dB dB dB dB dB (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 42 (42) is 3dB down from the 15 kHz applied level. (1) Apply a 3.58 MHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk. (1) Apply a 15 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 36 (36) begins to be distorted. (1) Apply a 15 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. (1) Apply a 15 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. Test Method
2000-09-11
29/40
TA1218N/F
Characteristics Select Mode VinTV VinV1 Yout Frequency response VinV2 Y/VinS1 Y/VinS2 Yin VinTV VinV1 Yout Crosstalk VinV2 Y/VinS1 Y/VinS2 Yin VinTV VinV1 VinV2 Cout Input dynamic range Y/VinS1 CinS1 Y/VinS2 CinS2 Cin VinTV VinV1 VinV2 Cout Gain Y/VinS1 CinS1 Y/VinS2 CinS2 Cin Symbol F7Y F10Y F28Y F12Y F16Y F30Y CT7Y CT10Y CT28Y CT12Y CT16Y CT30Y VDR7C VDR10C VDR28C VDR12C VDR14C VDR16C VDR18C VDR32C G7C G10C G28C G12C G14C G16C G18C G32C Test Circuit Min. 10 10 10 10 10 10 55 55 55 55 55 55 1.5 1.5 1.5 1.5 1.5 1.5 1.5 5.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 -0.5 Typ. 60 60 60 60 60 60 2.0 2.0 2.0 2.0 2.0 2.0 2.0 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 0 Max. 6.5 6.5 6.5 6.5 6.5 6.5 6.5 0.5 Unit MHz MHz MHz MHz MHz MHz dB dB dB dB dB dB Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p Vp-p dB dB dB dB dB dB dB dB (1) Apply a 15 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. (1) Apply a 15 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 34 (34) begins to be distorted. Test Method (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 36 (36) is 3dB down from the 15 kHz applied level. (1) Apply a 3.58 MHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk.
2000-09-11
30/40
TA1218N/F
Characteristics Select Mode VinTV VinV1 VinV2 Cout Frequency response Y/VinS1 CinS1 Y/VinS2 CinS2 Cin VinTV VinV1 VinV2 Cout Crosstalk Y/VinS1 CinS1 Y/VinS2 CinS2 Cin VinTV VinV1 VinV2 Det select Input dynamic range Y/VinS1 Vout1 Vout2 Yout Cout VinTV VinV1 VinV2 Det select Gain Y/VinS1 Vout1 Vout2 Yout Cout Symbol F7C F10C F28C F12C F14C F16C F18C F32C CT7C CT10C CT28C CT12C CT14C CT16C CT18C CT32C VDR7D VDR10D VDR28D VDR12D VDR38D VDR42D VDR36D VDR34D G7D G10D G28D G12D G38D G42D G36D G34D Test Circuit Min. 10 10 10 10 10 10 10 10 55 55 55 55 55 55 55 55 5.0 5.0 5.0 5.0 1.5 1.5 1.2 1.2 -0.5 -0.5 -0.5 -0.5 -0.1 -0.1 -0.1 -0.1 Typ. 60 60 60 60 60 60 60 60 5.5 5.5 5.5 5.5 2.0 2.0 1.8 1.8 0 0 0 0 0 0 0 0 Max. 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 Unit MHz MHz MHz MHz MHz MHz MHz MHz dB dB dB dB dB dB dB dB V V V V V V V V dB dB dB dB dB dB dB dB (1) Apply a 15 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. (1) Apply a 15 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 4 (46) begins to be distorted. Test Method (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 34 is 3dB down from the 15 kHz applied level. (1) Apply a 3.58 MHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk.
2000-09-11
31/40
TA1218N/F
Characteristics Select Mode LinTV LinV1 Lout1 Input dynamic range LinV2 LinS1 LinS2 LinTV LinV1 Lout1 Gain LinV2 LinS1 LinS2 LinTV LinV1 Lout1 Frequency response LinV2 LinS1 LinS2 LinTV LinV1 Lout1 Crosstalk LinV2 LinS1 LinS2 LinTV LinV1 Lout1 Mute attenuation LinV2 LinS1 LinS2 Symbol VDR5L1 VDR8L1 VDR29L1 VDR11L1 VDR15L1 G5L1 G8L1 G29L1 G11L1 G15L1 F5L1 F8L1 F29L1 F11L1 F15L1 CT5L1 CT8L1 CT29L1 CT11L1 CT15L1 M5L1 M8L1 M29L1 M11L1 M15L1 Test Circuit Min. 6.0 6.0 6.0 6.0 6.0 -0.5 -0.5 -0.5 -0.5 -0.5 0.1 0.1 0.1 0.1 0.1 70 70 70 70 70 70 70 70 70 70 Typ. 6.5 6.5 6.5 6.5 6.5 0 0 0 0 0 2.0 2.0 2.0 2.0 2.0 100 100 100 100 100 100 100 100 100 100 Max. 0.5 0.5 0.5 0.5 0.5 Unit Vp-p Vp-p Vp-p Vp-p Vp-p dB dB dB dB dB MHz MHz MHz MHz MHz dB dB dB dB dB dB dB dB dB dB Test Method (1) Apply a 1 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 37 (37) begins to be distorted. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 37 is 3dB down from the 1 kHz applied level. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare the output amplitudes on pin 37 (37) when mute is turned on and turned off to find mute attenuation.
2000-09-11
32/40
TA1218N/F
Characteristics Select Mode RinTV RinV1 Rout1 Input dynamic range RinV2 RinS1 RinS2 RinTV RinV1 Rout1 Gain RinV2 RinS1 RinS2 RinTV Symbol VDR6R1 VDR9R1 VDR31R1 VDR13R1 VDR17R1 G6R1 G9R1 G31R1 G13R1 G17R1 F6R1 Test Circuit Min. 6.0 6.0 6.0 6.0 6.0 -0.5 -0.5 -0.5 -0.5 -0.5 0.1 Typ. 6.5 6.5 6.5 6.5 6.5 0 0 0 0 0 2.0 Max. 0.5 0.5 0.5 0.5 0.5 Unit Vp-p Vp-p Vp-p Vp-p Vp-p dB dB dB dB dB MHz Test Method (1) Apply a 1 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 35 (35) begins to be distorted. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 35 (35) is 3dB down from the 1 kHz applied level. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare the output amplitudes on pin 35 (35) when mute is turned on and turned off to find mute attenuation.
RinV1 Rout1 Frequency response
F9R1
0.1
2.0
MHz
RinV2
F31R1
0.1
2.0
MHz
RinS1
F13R1
0.1
2.0
MHz
RinS2 RinTV RinV1 Rout1 Crosstalk RinV2 RinS1 RinS2 RinTV RinV1 Rout1 Mute attenuation RinV2 RinS1 RinS2
F17R1
0.1
2.0
MHz
CT6R1 CT9R1 CT31R1 CT13R1 CT17R1 M6R1 M9R1 M31R1 M13R1 M17R1
70 70 70 70 70 70 70 70 70 70
100 100 100 100 100 100 100 100 100 100
dB dB dB dB dB dB dB dB dB dB
2000-09-11
33/40
TA1218N/F
Characteristics Select Mode LinTV LinV1 Lout2 Input dynamic range LinV2 LinS1 LinS2 LinTV LinV1 Lout2 Gain LinV2 LinS1 LinS2 LinTV LinV1 Lout2 Frequency response LinV2 LinS1 LinS2 LinTV LinV1 Lout2 Crosstalk LinV2 LinS1 LinS2 LinTV LinV1 Lout2 Mute attenuation LinV2 LinS1 LinS2 Symbol VDR5L2 VDR8L2 VDR29L2 VDR11L2 VDR15L2 G5L2 G8L2 G29L2 G11L2 G15L2 F5L2 F8L2 F29L2 F11L2 F15L2 CT5L2 CT8L2 CT29L2 CT11L2 CT15L2 M5L2 M8L2 M29L2 M11L2 M15L2 Test Circuit Min. 6.0 6.0 6.0 6.0 6.0 -0.5 -0.5 -0.5 -0.5 -0.5 0.1 0.1 0.1 0.1 0.1 70 70 70 70 70 70 70 70 70 70 Typ. 6.5 6.5 6.5 6.5 6.5 0 0 0 0 0 2.0 2.0 2.0 2.0 2.0 100 100 100 100 100 100 100 100 100 100 Max. 0.5 0.5 0.5 0.5 0.5 Unit Vp-p Vp-p Vp-p Vp-p Vp-p dB dB dB dB dB MHz MHz MHz MHz MHz dB dB dB dB dB dB dB dB dB dB Test Method (1) Apply a 1 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 1 begins to be distorted. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 1 is 3dB down from the 1 kHz applied level. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare the output amplitudes on pin 1 (43) when mute is turned on and turned off to find mute attenuation.
2000-09-11
34/40
TA1218N/F
Characteristics Select Mode RinTV RinV1 Rout2 Input dynamic range RinV2 RinS1 RinS2 RinTV RinV1 Rout2 Gain RinV2 RinS1 RinS2 RinTV RinV1 Rout2 Frequency response RinV2 RinS1 RinS2 RinTV RinV1 Rout2 Crosstalk RinV2 RinS1 RinS2 RinTV RinV1 Rout2 Mute attenuation RinV2 RinS1 RinS2 Symbol VDR6R2 VDR9R2 VDR31R2 VDR13R2 VDR17R2 G6R2 G9R2 G31R2 G13R2 G17R2 F6R2 F9R2 F31R2 F13R2 F17R2 CT6R2 CT9R2 CT31R2 CT13R2 CT17R2 M6R2 M9R2 M31R2 M13R2 M17R2 Test Circuit Min. 6.0 6.0 6.0 6.0 6.0 -0.5 -0.5 -0.5 -0.5 -0.5 0.1 0.1 0.1 0.1 0.1 70 70 70 70 70 70 70 70 70 70 Typ. 6.5 6.5 6.5 6.5 6.5 0 0 0 0 0 2.0 2.0 2.0 2.0 2.0 100 100 100 100 100 100 100 100 100 100 Max. 0.5 0.5 0.5 0.5 0.5 Unit Vp-p Vp-p Vp-p Vp-p Vp-p dB dB dB dB dB MHz MHz MHz MHz MHz dB dB dB dB dB dB dB dB dB dB Test Method (1) Apply a 1 kHz sine wave to each input pin. (2) In each select mode, measure an input amplitude at which the output waveform on pin 2 (44) begins to be distorted. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, find the gain between input and output. (1) Apply a 1.0 Vp-p sine wave to each input pin. (2) In each select mode, measure a frequency at which the output amplitude on pin 2 (44) is 3dB down from the 1 kHz applied level. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins to find a crosstalk. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) In each select mode, compare the output amplitudes on pin 2 (44) when mute is turned on and turned off to find mute attenuation. While applying a 1 kHz sine wave to pin 5 (47), measure an input amplitude at which the output waveform on pin 40 (40) begins to be distorted.
LoutTV Input dynamic range
LinTV
VDR5LTV
6.0
6.5
Vp-p
2000-09-11
35/40
TA1218N/F
Characteristics Select Mode Symbol Test Circuit Min. Typ. Max. Unit Test Method While applying a 1 kHz, 1.0 Vp-p sine wave to pin 5 (47), find the gain between pins 5 (47) and 40 (40). While applying a 1.0 Vp-p sine wave to pin 5, measure a frequency at which the output waveform on pin 40 (40) is 3dB down from the 1 kHz applied level. (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) Compare the output amplitude when LinTV is selected with leakage components from nonselected pins to find a crosstalk. While applying a 1 kHz, 1.0 Vp-p sine wave to pin 5, compare the output amplitudes on pin 40 (40) when mute is turned on and turned off to find mute attenuation. While applying a 1 kHz sine wave to pin 6 (48), measure an input amplitude at which the output waveform on pin 39 (39) begins to be distorted. While applying a 1 kHz, 1.0 Vp-p sine wave to pin 6 (48), find the gain between pins 6 (48) and 39 (39). While applying a 1.0 Vp-p sine wave to pin 6, measure a frequency at which the output waveform on pin 39 (39) is 3dB down from the 1 kHz applied level.
LoutTV Gain
LinTV
G5LTV
-0.5
0
0.5
dB
LoutTV Frequency response
LinTV
F5LTV
0.1
2.0
MHz
LinTV LinV1 LoutTV Crosstalk LinV2 LinS1 LinS2
CT5LTV CT8LTV CT29LTV CT11LTV CT15LTV

70 70 70 70 70
100 100 100 100 100

dB dB dB dB dB
LoutTV Mute attenuation
LinTV
M5LTV
70
100
dB
RoutTV Input dynamic range
RinTV
VDR6RTV
6.0
6.5
Vp-p
RoutTV Gain
RinTV
G6RTV
-0.5
0
0.5
dB
RoutTV Frequency response
RinTV
F6RTV
0.1
2.0
MHz
2000-09-11
36/40
TA1218N/F
Characteristics Select Mode RinTV RinV1 RoutTV Crosstalk RinV2 RinS1 RinS2 Symbol CT6RTV CT9RTV CT31RTV CT13RTV CT17RTV Test Circuit Min. 70 70 70 70 70 Typ. 100 100 100 100 100 Max. Unit dB dB dB dB dB Test Method (1) Apply a 1 kHz, 1.0 Vp-p sine wave to each input pin. (2) Compare the output amplitude when RinTV is selected with leakage components from nonselected pins While applying a 1 kHz, 1.0 Vp-p sine wave to pin 6 (48), compare the output amplitudes on pin 39 (39) when mute is turned on and turned off to find mute attenuation.
RoutTV Mute attenuation
RinTV
M6RTV
70
100
dB
2000-09-11
37/40
TA1218N/F
Application Circuit
1 Lout2 (43) 2 Rout2 (44) 0.01 F 3 Det in (45) 4 Det Select (46) 5 LinTV (47) 6 RinTV (48) 7 VinTV (2) 8 LinV1 (3) 9 RinV1 (5) 10 VinV1 (6) 11 LinS1 (7) 12 Y/VinS1 (8) 13 RinS1 (9) 14 CinS1 (10) 15 LinS2 (11) 16 Y/VinS2 (12) 17 RinS2 (13) 18 CinS2 (15) 19 I/O1 (16) 20 I/O2 (17) 21 I/O3 (18) TA1218N/F
Vout2 42 (42) O5 41 (41) LoutTV 40 (40) RoutTV 39 (39) Vout1 38 (38) Lout1 37 (37) Yout 36 (36) Rout1 35 (35) Cout 34 (34)
VCC = 9 V 4.7 k 0.01 F 0.01 F 0.01 F 2.2 F 47 F 2.2 F 47 F 10 k To microcomputer 0.01 F 4.7 k
2.2 F 2.2 F 47 F 2.2 F 2.2 F 47 F 2.2 F 47 F 2.2 F 0.01 F 2.2 F 47 F 2.2 F 0.01 F 0.01 F 4.7 k 4.7 k 4.7 k
Cin 32 (30) RinV2 31 (29) Yin 30 (28) LinV2 29 (27) VinV2 28 (26) Address 27 (25) Sync out 26 (24) SDA 25 (23) SCL 24 (22) GND 23 (21) O4 22 (19)
Note8: (
): The terminal of TA1218F.
0.01 F
0.01 F
2000-09-11
100 F
VCC 33 (33)
38/40
TA1218N/F
Package Dimensions
Weight: 4.13 g (typ.)
2000-09-11
39/40
TA1218N/F
Package Dimensions
Weight: 0.83 g (typ.)
2000-09-11
40/40


▲Up To Search▲   

 
Price & Availability of TA1218F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X